九年级数学知识点总结
各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。
初三数学上册知识点归纳
1.数的分类及概念数系表: 说明:分类的原则:
1.相称不重、不漏
2.有标准
2.非负数:正实数与零的统称。表为:x0 性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数: ①定义及表示法 ②性质:A.a1/aa
1.;B.1/a中,aC.0
4.相反数: ①定义及表示法 ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-
1.�
5.数轴: ①定义三要素 ②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数正整数自然数 定义及表示: 奇数:2n-1 偶数:2nn为自然数
7.绝对值: ①定义两种: 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志; ③数a的绝对值只有一个; ④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。 九年级下册数学知识点归纳
一.平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边或两边的延长线所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二.相似预备定理: 平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三.相似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:
1.相似三角形的对应角相等;
2.相似三角形的对应线段边、高、中线、角平分线成比例;
3.相似三角形的周长比等于相似比,面积比等于相似比的平方。 说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:
1.两角对应相等,两三角形相似;
2.两边对应成比例,且夹角相等,两三角形相似;
3.三边对应成比例,两三角形相似;
4.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
九年级下册数学知识点 圆 ★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。 ☆内容提要☆
一.圆的基本性质
1.圆的定义两种
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
初三的数学主要是学什么?学习的内容主要包括:直角三角形的边角关系、反比例函数、二次函数、圆.知识内容看似不多,但是都是中考数学的重点和难点.首先,反比例函数与几何综合在中考选择填空题中,出现压轴题还是非常正常的;再者,对圆来讲,它是平面几何中知识最多的几何图形,涉及的考点和题型也是最多的,在中考证明题中,难度一定不会小;最后,二次函数,在中考数学中以压轴题的形式出现,几乎可以算得上必考的压轴题了.综合上述所讲,初三的学习内容难度不小,对中考起决定性的作用.应该怎么学加强基础:无论学什么或者考什么,都离不开基础知识,在学习之初抓住基础,不可一味求难.适当拓展:掌握基础为前提,进行相应的拓展.例如反比例函数与几何综合的中考题型可以尽早去接触,二次函数压轴题型也要经常去训练,这样才不至于时间太紧张而错失学习的机会.。九年级数学知识点有哪些?九年级数学知识点:
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.命题:判断一件事情的语句叫命题。
6.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
7.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
8.两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”。
9.两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”。
10.两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”。
1
1.两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS"。1
2.两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“直角边、斜边”或“HL”。
初三数学内容有哪些初三数学学的基本内容分别是“图形与几何”,“函数与分析”,“数据处理与概率统计”。
1.图形与几何系列内容以研究图形性质为载体,形成初等几何的基础。
体现经验几何是起点,注重直观感知;实验几何是基础,注重合情推理如类比、归纳以及操作说理;论证几何是重点,注重演绎推理。
2.函数与分析系列内容以形成函数概念和直观研究简单初等函数为基本任务,进行数学分析的奠基。在一次函数、二次函数和反比例函数等基本函数研究中,展示初等的分析方法。
3.数据处理与概率统计系列内容以体验概率与统计的基本思想方法为重点,引进概率与统计的初步知识。完善数据处理的基本方法,建立初步的概率与统计知识基础;解释和解决现实生活中一些简单的概率统计问题。
扩展资料:数学概念是初中数学的基石,是数学的思维模式和方法载体。很多学生遇到的数学解题困难,追溯根源,往往发现是由于他们在某个数学概念处产生了问题,致使解题受阻。概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。
数学概念学习方法:在学习中要了解概念的发生与形成过程中,弄清概念之间的区别与联系,在头脑中形成相关概念的网络,以达到掌握并灵活运用的程度。学习数学新概念前,如果能让学生认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。
九年级数学知识点归纳总结这篇文章我将九年级数学重要知识点做了归纳总结,希望可以帮助同学们系统的复习九年级数学的重要知识点。 有理数
1.定义 有理数为整数正整数、0、负整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。
2.有理数的性质
1.顺序性
2.封闭性
3.稠密性
3.有理数的加法运算法则
1.同号两数相加,取与加数相同的符号,并把绝对值相加。
2.异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3.互为相反数的两数相加得0。
4.一个数同0相加仍得这个数。
5.互为相反数的两个数,可以先相加。
6.符号相同的数可以先相加。
7.分母相同的数可以先相加。
8.几个数相加能得整数的可以先相加。
9.减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。 二元一次方程组
1.定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。
2.二元一次方程组的解法
1.代入法 由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
2.因式分解法 在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
3.配方法 将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
4.韦达定理法 通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
5.消常数项法 当方程组的两个方程都缺一次项时,可用消去常数项的方法解。 整式
1.整式的乘法: ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。 ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
2.整式的除法: ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。 ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 相似三角形
1.三角分别相等,三边成比例的两个三角形叫做相似三角形。
2.相似三角形的判定 ①定理:两角分别对应相等的两个三角形相似。 ②定理:两边成比例且夹角相等的两个三角形相似。 ③定理:三边成比例的两个三角形相似。 ④定理:一条直角边与斜边成比例的两个直角三角形相似。
根据以上判定定理,可以推出下列结论: 推论①三边对应平行的两个三角形相似。 推论②一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
3.相似三角形的性质 ①相似三角形的对应角相等,对应边成比例。
②相似三角形任意对应线段的比等于相似比。 ③相似三角形的面积比等于相似比的平方。
初三九年级上册数学的知识点归纳初三九年级上册数学的知识点归纳1 九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。本册书内容分析如下: 第21章 二次根式 学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。
解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。 在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论: 注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到并运用它们进行二次根式的化简。
二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。
这些处理有助于学生掌握本节内容。 第22章 一元二次方程 学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。
一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。 本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念, 22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。
下面分别加以说明。
1.在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。
然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。
2.在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
3.在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。 第23章 旋转 学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。
旋转一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。 23.1旋转一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。
在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。 23.2中心对称一节首先通过实例介绍中心对称的概念。
然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。
23.3课题学习 图案设计一节让学生探索图形之间的变换关系平移、轴对称、旋转及其组合,灵活运用平移、轴对称、旋转的组合进行图案设计。 第24章 圆 圆是一种常见的图形。在圆这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。
通过这一章的学习,学生的解决图形问题的能力将会进一步提高。 24.1圆一节首先介绍圆及其有关概念。然后让学生探究与垂直于。
九年级上册数学书内容有哪些?九年级数学分为代数、几何两个部分。代数内容有二次函数,统计初步二章;几何内容有相似三角形、锐角三角比、圆与正多边形三章。
初三数学的学习,是以前两年数学学习为基础的,是对已学知识的加深、拓宽、综合与延续,是初中数学学习的重点,也是中考考查的重点。相信很多同学已经体会到这样一件事,就是初一的数学比小学难,初二的数学比初一的数学更难,初三的数学已经有同学上课听不懂,盯着黑板发呆的人不少。初三数学是以前两年的学习内容为基础的,可以用来复习、巩固相关的内容,同时新知识的学习常常由旧知识引入或要用到前面所学过的内容,甚至是已有知识的综合、提高与延续。因此在学习中,要注意前后知识的联系,以便达到巩固与提高的目的。其实,要学好初中数学,初一的时候一定要打好基础,初二的时候成绩要稳得住,初三复习阶段需要多总结错题,这样中考才能考出理想的成绩。
为了帮助学生学好初三数学,我给大家分享一份初三数学上册的全册知识点总结,、希望这份资料能够补上孩子的不足,好好利用这份资料就会在开学考试的时候考出好成绩。